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ABSTRACT

An algorithm is described for the efficient and

reliable evaluation of badly behaved definite integrals to

a prescribed accuracy by concentrating the abscissas near

the regions of greatest irregularity in the integrand. This

is achieved by subdividing the interval of integration and

by using a combination of the 7-point Clenshaw-Curtis quad-

rature and the 9-point Romberg quadrature in each subinterval.

We argue that our algorithm will nearly minimize the number

of function evaluations needed to evaluate a badly behaved

integral.



1. INTRODUCTION

In a previous paper ( Now O 'Hara and Smith, 1968) we

discussed the problem of the efficient evaluation of an

integral

'bJ f ^w^ G^aC.	 (1.1)

a
to a prescribed accuracy when f(x) is well behaved and when

we can choose the abscissas at any points in the finite

closed interval [a,b]. We argued that the integral is best

evaluated by a modification of the Clenshaw-Curtis method

(Clenshaw and Curtis, 1960) provided that the coefficients

in the Chebyshev expansion of the integrand fall off fast

enough (which we used to define "well behaved"). When the

integrand is sufficiently badly behaved it is known (Ralston

1965; Wright, 1966) that the integral is best evaluated by

splitting the interval of integration and by using low order

formulas to evaluate the integra?. over each subinterval. This

`	 was illustrated with an example in our previous paper.

Another example is given in figure 1.

In this paper we describe a method for subdividing the

interval which concentrates the abscissas near the regions

of greatest irregularity and we a%amine which quadrature

should be used in each subinterval to evaluate the integral

reliably with the minimum number of function evaluations.



We assume thar numerical values of V (x) are not available,

that all singularities have been removed as far as possible

by changes of variable, etc., and that it is known that f(x)

is sufficiently well behaved that-the integral can be eval-

uated with at most a few thousand abscissas. For example,

when it is known that f(x) is liable to have sudden peaks,

whose positions are unknown, with half-width, say, (b-a)/105,

then the whole interval should first be subdivided into a

set of - 10 3 or 10 4 smaller intervals; otherwise the method we

describe would be unreliable.



2. THE ALGORITHM

We consider first an algorithm for evaluating an integral

to a prescribed absolute accuracy, c o Sometimes a relative

or percentage accuracy is required; this can be treated with

a similar algorithm which we discuss briefly in Appendix A.

The basic feature of the algorithm is that the interval

is broken up into subintervals; each subinterval is divided

until the estimated error bound for the subinterval is less

than the acceptable error, then to make the algorithm as

efficient as possible the difference between the error bound

and the acceptable error is used to increase the acceptable

errors in the remaining subintervals, keeping the sum of the

absolute errors less than c.

The main structure of the algorithm we propose is in-

dependant of the quadrature, I pq , used to evaluate the

integral over the interval (p,q). We.let 
JEpgI 

denote a

computable absolute error bound for this quadrature (assum-

ing that there is one). We begin by calculating IEabj. If

jEabj<E, the quadrature Iab, is accepted; otherwise we

bisect (a,b) at c. If IF. acI<kac e s where k ac is a constant

less than one (we will assign k pq a value later), then we

accept I ac as the integral over (a,c) and the interval (c,b)

is considered. Otherwise we bisect (a,c) at d and

ct e d	 c	 b



check if 
JEadI<kad 

c; we continue this process till such a

condition is satisfied, say, at,(a,e). Now (a,e) has been

integrated to an accuracy (E ae l, so if the whole interval

(a,b) is to be integrated to an accuracy c then the remain-

ing interval (e,b) must be integrated to an accuracy

c
e n c	

ae ^
E	 We therefore consider next the interval (e,d),

and check if IE ed I<k ed c e . Provided that the constants kpq

are chosen small enough for this process to converge we

eventually obtain a value for the-integral

and an error

1 E-0-61	 ^ aqj	 l ^^ -P4 <	 (2.1)

We ses	 /several possible.ways of choosing the

constants kpq , including some which were functions of the

number of subintervals between q and b, (details will be

given in a 'thesis by O'Hara, 1969) but in practice we found

little.'difference between them. Those which were marginally

mire efficient occasionally did not converge; we therefore

adopted the simple choice

• "^"^J	 O •' 4 cv b	 (2.2)

and when q •b, kpq must be set equal to unity to ensure that

the inequality in (2.1)' is satisfied. This gave convergence



in all but a few rare cases, and in these cases 0.1 can be

replaced by 0.01 or a smaller number to insure convergence.

Iri the foregoing discussion we have assumed that

JEpg i is a computable error bound for the quadradure Ipq.

In practice it is r are when it is possible to compute a

realistic bound. Usually we have to depend on a computable

error estimate, which is occasionally. fallible (for example,

by comparing two or more independent quadratures). If the

interval is subdivided several times, however, the quadrature

over the whole interval is very much more reliable than the

quadrature over each sub-interval: This follows from the

first inequality in (2.1) and because JE pg I will be bigger

than the actual error in I pq in all but a very few cases if

the error estimate JE pq ) is reliable. This is verified in

the results we discuss later.



3. L014-ORDER QUAD^ATURE

A wide range of low order quadratures can be used to

evaluate the integrals over each subinterval but most of

them are unsuitable because all or nearly all previous function

evaluations are lost each time an interval has to be divided.

Hence all of the Gaussian quadratures and the wide range.of optimal

formulae due•to Stern (1967) are unsuitable and as expected, we

found them to be inefficient in practice. ,	Those due to Sard (1949)

we found to be unreliable.	 On the other hand some simple formulae

such as the Trapezoidal rule or Simpson's rule are not accurate

enough to be efficient even though they lose no function

evaluations at each interval subdivision.	 The 5-point Newton-Cotes

and the 9-point Romberg quadratures are better because they are

in general more accurate and they also lose no function evaluations

at each subdivision.	 The 17-point, 33-point, etc. Romberg

quadratures lose no . function evaluations but algorithms

based-on these quadratures are in general no more efficient than

those using the 9-point Romberg and so we will not discuss

them further.

There are two other quadratures which are very suitable

for any method of integration by interval subdivision.

Those are the 5-point Lobatto quadrature and the 7-point

Clenshaw-Curtis quadrature.	 The &► scissas of the 5-point



Lobatto quadrature include the two end points and the.mid-

point, therefore only two function evaluations are lost

each time an interval is subdivided. 	 Similarly the 7-

point Clenshaw-Curtis formula includes, in the interval

+1), the S abscissas 1 1, ±} and 0, and hence only the
function evaluations at the two other abscissas are lost when

the interval is subdivided. 	 This quadrature can. be written:-
+1

F(k)Jt	 - [F CO +P&01 += ^FC ^)^-Fe^) ] +3SFCa)3 
-^	 ( 31i)

+ 66 [F(^r/z)+ r- (-5/1)J.
Like other Clenshaw-Curtis quadratures (O'Hara and Smith, 1968)

it has a high accuracy, comparable to or better than that of

the 9-point Romberg quadrature.	 This is illustrated in

Table 1 where we compare some of the quadratures we have

discussed for two integrands.	 Similar results were found

for other integrands. 	 The maximum errors shown in the Table

are obtained by introducing an arbitrary parameter a

and changing the variable from x to y

where	 $+ 0.	 J.- a se- I + L+ 1	 (3.2)

to give	 (3.3)

4	 -^
The respective quadrature is then applied to the second

integral for 100 values of a between 0.5 and .2.5.	 This is

r,



equivalent to evaluating 100 different but similar integrals

for each integrand f . (x).	 This process helps to eliminate

the probability of an error being accidentally small.

Similar results were obtained by comparing the root-mean-square

errors.	 We also compare the quadratures in Table 1 by giving

ts.e coefficientl?R of the Davis-Rabinowitz (1954) error

estimate:

)el <,. dR 11f11

where 11fli is the norm of f(e) over the region R in the
complex plane within which f(z) is assumed analytic; in

the table R is taken as an ellipse with semi-major axis a • 1.2.

Similar results were found for other a values.

From the Table it is clear that the Clenshaw-Curtis

and Romberg formulaes are the most accurate. 	 They also

have many abscissas in common, so it is not surprising

that when they are combined in one algorithm they yield a

very efficient method for evaluating integrals.



4. APPLICATION TO TIIR ALGORITHM

We teste •1 the previous quadratures in our algorithm

by evaluating large numbers of integrals and comparing the

results.	 The test integrals were as follows:
t

S J L^^L	 26

	 so, 

d^

oL t _	 J dx	 off[.

	

t	 .L

O	 L	 4'	 r i

where	
e^x	 X ^ Z i
e

I-x ^ 7L _
These were evaluated first by changing the variable so that

b	 b 1 ^- d b

a	 a. ^J ^- d (,b - y)^ ^U cb-.9)

and by evaluating the fight-hand integral for values of

. a in the range O $ a # 255.	 This distorted the integrands

considerably for the extreme values of a and made the

corresponding integrals very difficult to evaluate. 	 We

tested the algorithm in each case for five different

accuracies E

between	 #10-3 and 110-7.

We concluded that the following combination of

quadrature formulas is the most reliable and efficient.

The 9-point Romberg is used in each subinterval and its

accuracy tested by comparing it with two 5-point Newton-

Cotes formulas (using tLe same 9 abscissas). . The interval

is subdivided till the difference between these two is less



than the tolerated error (no function evaluations have been

lost up to this stage).	 We next compare the 9-point Romberg

quadrature with the sum of two 7-point Clenshaw-Curtis quadratures

over	 ch half of the interval; this requires the evaluation

of the integrand at four additional points in each sub-

interval.	 'If this check is also satisfied, we use in addition

the sum of the absolute error estimates for the 7-point Clenshaw-

Curtis quadratures (O'Hara and Smith, 1968) based on the formula

for the interval (-1, +1)

E
0

E6 )
3z 6 If	 s

i) ^t^ 6S,	 (4.2)^ Y6 A- 
0

If this is less than the tolerated error then.we adopt

the sum of the two 7-point Clenshaw-Curtis quadratures as

the result.	 In all, this . result is checked by three

independent error estimates and it should be very reliable.

We found that amongst approximately the 6000 applications of

our &Igorithm-to the extreme examples quoted we had only

21 failures (by a failure we mean that the actual error is

greater than the tolerated error). 	 We call this the CCR-

method (Clenshaw-Curtis-Romberg-method).

Even greater reliability can be obtained by requesting

an error c less than the error actually.required; for

example there would have been only 4 failures in the above

tests if we had requested an-error equal to half that required

and no failures if we had requested an error one tenth that

required.	 Alternatively we can check the final result in each

subinterval with one 7-point Clenshaw-Curtis quadrature over



the whole subinterval and in addition use the error estimate

(4.2), and so introduce two extra checks at the expense of

only 2 function evaluations.	 In the above tests this would

have eliminated 311 21 failures with about 15Y. more work.

We illustrate the efficiency of our CCR-method in Table 2

where we compare it with two other methods, one based on

Simpson's rule from the Atlas subroutine library and the other

based on interval subdivision as in 52 but usin ,; the 4 point

Gauss formula.	 (We illustrate only two of a large number

of other comparisons we made). In our tests the Gauss

method was as reliable as the CCR-method, but much less

efficient; the Atlas routine was much less reliable, it

failed 59 times	 ^in more than 1 in r of the Zest

integrals it did not converge to any answer with -single.

length arithmetic.	 The CCR-method converged to a

result'in all 6,000 integrals.



S. CONCLUSION

We have outlined an algorithm which will evaluate

.an integral to any required accuracy.. 	 It is efficient

an%: reliable: out of several thousands of badly behaved

integrals it.'failed only a few times and it is easy to

increase its reliability further as required.

A limited number of copies of a program in FORTRAN 49

based on the above algorithm are available on request.



APPENDIX A

Relative Errors.

We wish to evaluate the integral to a relative accuracy c; that

is,if E is the error in the quadrature and I is the integral then we

'	 require JE/I1 to be less than c. 	 If the integrand always has the

same sign the problem is straightforward; we adopt the same principle-

in 62 and require thak in each subinterval (p,q)

< r t. Z C^~ 1^^^ I L I	
(A.1)

r	 ^0.
This allows lEpq/Ipql to be as large as possible while still keeping

JEEpq/IJ < c. When the integrand changes sign the problem is more

difficult because I may be small and because Ipq may be close to zero.

This last problem can usually be overcome by jumping to the next

subinterval if Ipq is found to be small. On the other hand if any Ipq

is negative than R - ElEpgl/IEIpgl may be larger than c. 	 In this case

2
the calculation can be repeated after replacing c in (A.1) by c /R.

The use of (A.1) has been found to be satisfactory in practice.
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TABLE 1

Comparison of low order quadrature formula; in the

table are given Maximum errors (as defined in the text) for

integration of f 	 over (0,1); n is the number of abscissas

and Crk is the Davis-Rahinowitz • error coefficient for a-1.2.

Formula n f 
R

(1+100x2)-1&uah(x)

0.15(-2)	 0.007(-4)!0.406(-3)2x7pt Clenshaw Curtis T13

2x5pt Lobatto 9 0.94(-2).	 0.11(-4)	 0.399(-2)

Clenshaw-Curtis (	 7 1.19(-2){	 0.•37(-4)	 -.722(-2)	 1

IRomberg (	 91 0.96(-2);	 1.54(-4)	 .177(-1)	 I

2x5pt Newton-Cotes 9I 0.93(-2){	 2.08(-4)	 0.180(-l)	
{

Lobatto 51 1.82(-2)1	 4.35(-4)	 10.468(-1)	 ((

5pt Newton-Cotes 51 1.26(-2)!	 35.90(-4)	 X1.122(0)	 I

2x3p•t Simpson f	 51 8.54(-2))	 59.37(-4)	 K0.127(0)

apt Simpson 3127.74(- 2)!498.62(-4)	 10.502(0)



TABLE 2

Number of function evaluations required to evaluate

^o f(x)dx to a specified accuracy.

CCR-

f(x)	 Accuracy	 Atlas	 4-pt Gauss

6	 -erg	 routine	 41pl i t-

0.5 (-3)	 125	 122	 216

0.5 (-4)	 137	 181	 238

0.5 (-5)	 133b	 311	 260

0.5 (-6)	 241	 548	 414

0.5 (-7)	 277-	 a	 480

0.5 (-8)	 397	 a	 678

0.5 (-3)	 41	 23	 62

0.5 (-4)	 53	 32	 84

t	 0.5 (-5)	 61	 52	 84

0.5 (-6)	 61	 92	 106
(^/odxt

0.5 (-7)	 97	 157	 196

0.5 (-8)	 145	 248	 216

0.5 (-9)	 193	 432	 260

0.5 (-10)	 253	 742	 348

a	 No convergence.

b	 This number is correct although smaller than the number above it.
In both cases the interval was finally subdivldedin exactly the same
way; in the upper case the failure of an early error test Was detected
using 4 additional function evaluations.

4

F

F	 _
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Caption for Figure

Figure 1. Error E obtained by integrating 4FC4 ttae tkac) ^^ar (^i`)

with N integrand evaluations using

1: interval subdivision and the CCR-method (see text),

2: Clenshaw-Curtis quadrature.



. Ln

(JOJJ3) 0150,

N

C4

cpb
iz

Q
Al

•

cr

In
.OL -


	GeneralDisclaimer.pdf
	1969002210.pdf
	0034A01.pdf
	0034A03.pdf
	0034A03a.pdf
	0034A04.pdf
	0034A08.pdf
	0034A09.pdf
	0034B02.pdf
	0034B03.pdf
	0034B04.pdf
	0034B05.pdf
	0034B06.pdf
	0034B07.pdf
	0034B08.pdf
	0034B09.pdf
	0034B10.pdf
	0034B11.pdf
	0034B12.pdf
	0034C01.pdf
	0034C02.pdf
	0034C03.pdf
	0034C04.pdf
	0034C05.pdf
	0034C06.pdf
	0034C07.pdf
	0034C08.pdf
	0034C09.pdf
	0034C10.pdf
	0034C11.pdf


